Microsoft Wikia


856pages on
this wiki
Add New Page
Talk0 Share

Ethernet is a family of frame-based computer networking technologies for local area networks (LANs). The name came from the physical concept of the ether. It defines a number of wiring and signaling standards for the Physical Layer of the OSI networking model as well as a common addressing format and Media Access Control at the Data Link Layer.

Ethernet is standardized as IEEE 802.3. The combination of the twisted pair versions of Ethernet for connecting end systems to the network, along with the fiber optic versions for site backbones, is the most widespread wired LAN technology. It has been used from around 1980[1] to the present, largely replacing competing LAN standards such as token ring, FDDI, and ARCNET.

File:Ethernet RJ45 connector p1160054.jpg



Ethernet was developed at Xerox PARC between 1973 and 1975.[2] It was inspired by ALOHAnet which Robert Metcalfe had studied as part of his PhD. dissertation.[3] In 1975, Xerox filed a patent application listing Metcalfe, David Boggs, Chuck Thacker and Butler Lampson as inventors.[4] In 1976, after the system was deployed at PARC, Metcalfe and Boggs published a seminal paper.[5][note 1]

Metcalfe left Xerox in 1979 to promote the use of personal computers and local area networks (LANs), forming 3Com. He convinced Digital Equipment Corporation (DEC), Intel, and Xerox to work together to promote Ethernet as a standard, the so-called "DIX" standard, for "Digital/Intel/Xerox"; it specified the 10 megabits/second Ethernet, with 48-bit destination and source addresses and a global 16-bit Ethertype type field. The first standard draft was first published on September 30, 1980 by the Institute of Electrical and Electronics Engineers (IEEE).[citation needed] Support of Ethernet's carrier sense multiple access with collision detection (CSMA/CD) in other standardization bodies (i.e. ECMA, IEC and ISO) was instrumental in getting past delays of the finalization of the Ethernet standard due to the difficult decision processes in the IEEE, and due to the competitive Token Ring proposal strongly supported by IBM.[citation needed] Ethernet initially competed with two largely proprietary systems, Token Ring and Token Bus. These proprietary systems soon found themselves buried under a tidal wave of Ethernet products. In the process, 3Com became a major company. 3Com built the first 10 Mbit/s Ethernet adapter (1981).[citation needed] This was followed quickly by DEC's Unibus to Ethernet adapter, which DEC sold and used internally to build its own corporate network, which reached over 10,000 nodes by 1986; far and away the largest extant computer network in the world at that time.[citation needed]

Through the first half of the 1980s, DEC's Ethernet implementation utilized a coaxial cable about the diameter of a US nickel which became known as Thick Ethernet when its successor, Thinnet Ethernet was introduced. Thinnet uses a cable similar to cable television cable of the era. The emphasis was on making installation of the cable easier and less costly.

The observation that there was plenty of excess capacity in unused unshielded twisted pair (UTP) telephone wiring already installed in commercial buildings provided another opportunity to expand the installed base and thus twisted-pair Ethernet was the next logical development in the mid 1980s, beginning with StarLAN. UTP-based Ethernet became widely known with 10BASE-T standard. This system replaced the coaxial cable systems with a system of hubs linked via UTP.

In 1990, Kalpana introduced the first Ethernet switch[6] which replaced the CSMA/CD scheme in favor of a switched full duplex system offering higher performance and at a lower cost than using routers.


Notwithstanding its technical merits, timely standardization was instrumental to the success of Ethernet. It required well-coordinated and partly competitive activities in several standardization bodies such as the IEEE, ECMA, IEC, and finally ISO.

In February 1980 IEEE started a project, IEEE 802, for the standardization of local area networks (LAN).[7]

The "DIX-group" with Gary Robinson (DEC), Phil Arst (Intel) and Bob Printis (Xerox) submitted the so-called "Blue Book" CSMA/CD specification as a candidate for the LAN specification. Since IEEE membership is open to all professionals, including students, the group received countless comments on this brand-new technology.

In addition to CSMA/CD, Token Ring (supported by IBM) and Token Bus (selected and henceforward supported by General Motors) were also considered as candidates for a LAN standard. Due to the goal of IEEE 802 to forward only one standard and due to the strong company support for all three designs, the necessary agreement on a LAN standard was significantly delayed.

In the Ethernet camp, it put at risk the market introduction of the Xerox Star workstation and 3Com's Ethernet LAN products. With such business implications in mind, David Liddle (General Manager, Xerox Office Systems) and Metcalfe (3Com) strongly supported a proposal of Fritz Röscheisen (Siemens Private Networks) for an alliance in the emerging office communication market, including Siemens' support for the international standardization of Ethernet (April 10, 1981). Ingrid Fromm, Siemens representative to IEEE 802 quickly achieved broader support for Ethernet beyond IEEE by the establishment of a competing Task Group "Local Networks" within the European standards body ECMA TC24. As early as March 1982 ECMA TC24 with its corporate members reached agreement on a standard for CSMA/CD based on the IEEE 802 draft. The speedy action taken by ECMA decisively contributed to the conciliation of opinions within IEEE and approval of IEEE 802.3 CSMA/CD by the end of 1982.

Approval of Ethernet on the international level was achieved by a similar, cross-partisan action with Fromm as liaison officer working to integrate IEC TC83 and ISO TC97SC6, and the ISO/IEEE 802/3 standard was approved in 1984.


Ethernet is an evolving technology. Evolutions have included higher bandwidth, improved media access control methods and changes the physical medium. Ethernet evolved into the complex networking technology that today underlies most LANs. The coaxial cable was replaced with point-to-point links connected by Ethernet hubs or switches to reduce installation costs, increase reliability, and enable point-to-point management and troubleshooting. There are many variants of Ethernet in common use.

Ethernet stations communicate by sending each other data packets, blocks of data that are individually sent and delivered. As with other IEEE 802 LANs, each Ethernet station is given a single 48-bit MAC address, which is used to specify both the destination and the source of each data packet. Network interface cards (NICs) or chips normally do not accept packets addressed to other Ethernet stations. Adapters generally come programmed with a globally unique address.[note 2] Despite the significant changes in Ethernet from a thick coaxial cable bus running at 10 Mbit/s to point-to-point links running at 1 Gbit/s and beyond, all generations of Ethernet (excluding early experimental versions) share the same frame formats (and hence the same interface for higher layers), and can be readily interconnected through bridging.

Due to the ubiquity of Ethernet, the ever-decreasing cost of the hardware needed to support it, and the reduced panel space needed by twisted pair Ethernet, most manufacturers now build the functionality of an Ethernet card directly into PC motherboards, eliminating the need for installation of a separate network card.

Shared media

File:Network card.jpg

Ethernet was originally based on the idea of computers communicating over a shared coaxial cable acting as a broadcast transmission medium. The methods used were similar to those used in radio systems,[note 3] with the common cable providing the communication channel was likened to the ether and it was from this reference that the name "Ethernet" was derived.

The advantage of CSMA/CD was that, unlike Token Ring and Token Bus, all nodes could "see" each other directly. All "talkers" shared the same medium - a single coaxial cable - however, this was also a limitation; with only one speaker at a time, packets had to be of a minimum size to guarantee that the leading edge of the propagating wave of the message got to all parts of the medium before the transmitter could stop transmitting, thus guaranteeing that collisions (two or more packets initiated within a window of time which forced them to overlap) would be discovered. Minimum packet size and the physical medium's total length were thus closely linked.

Ethernet originally used a shared coaxial cable (the shared medium) winding around a building or campus to every attached machine. A scheme known as carrier sense multiple access with collision detection (CSMA/CD) governed the way the computers shared the channel. This scheme was simpler than the competing token ring or token bus technologies. Computers were connected to an Attachment Unit Interface (AUI) transceiver, which was in turn connected to the cable (later with thin Ethernet the transceiver was integrated into the network adapter). While a simple passive wire was highly reliable for small Ethernets, it was not reliable for large extended networks, where damage to the wire in a single place, or a single bad connector, could make the whole Ethernet segment unusable. Multipoint systems are also prone to very strange failure modes when an electrical discontinuity reflects the signal in such a manner that some nodes would work properly while others work slowly because of excessive retries or not at all.[note 4] These could be much more painful to diagnose than a complete failure of the segment.

Since all communications happen on the same wire, any information sent by one computer is received by all, even if that information is intended for just one destination. The network interface card interrupts the CPU only when applicable packets are received: the card ignores information not addressed to it.[note 5][note 6] Use of a single cable also means that the bandwidth is shared, so that network traffic can slow to a crawl when, for example, the network and nodes restart after a power failure.

Repeaters and hubs

For signal degradation and timing reasons, coaxial Ethernet segments had a restricted size. Larger networks could be built by using an Ethernet repeater. Initial repeaters only had 2 ports but they gave way to 4-, 6-, 8-ports and more. People recognized the advantages of cabling in a star topology, primarily that only faults at the star point will result in a badly partitioned network

File:10baseT cable.jpeg

Ethernet on unshielded twisted-pair cables (UTP), beginning with StarLAN and continuing with 10BASE-T, was designed for point-to-point links only and all termination was built into the device. This changed repeaters from a specialist device used at the center of large networks to a device that every twisted pair-based network with more than two machines had to use. The tree structure that resulted from this made Ethernet networks more reliable by preventing faults with one peer or its associated cable from affecting other devices on the network,[note 7] although a failure of a hub or an inter-hub link could still affect lots of users. Also, since twisted pair Ethernet is point-to-point and terminated inside the hardware, the total empty panel space required around a port is much reduced, making it easier to design hubs with lots of ports and to integrate Ethernet onto computer motherboards.

Despite the physical star topology, hubbed Ethernet networks still use half-duplex and CSMA/CD, with only minimal activity by the hub, primarily the Collision Enforcement signal, in dealing with packet collisions. Every packet is sent to every port on the hub, so bandwidth and security problems aren't addressed. The total throughput of the hub is limited to that of a single link and all links must operate at the same speed.

Collisions reduce throughput by their very nature. In the worst case, when there are lots of hosts with long cables that attempt to transmit many short frames, excessive collisions can reduce throughput dramatically. However, a Xerox report in 1980 summarized the results of having 20 fast nodes attempting to transmit packets of various sizes as quickly as possible on the same Ethernet segment.[8] The results showed that, even for the smallest Ethernet frames (64 Bytes), 90% throughput on the LAN was the norm. This is in comparison with token passing LANs (token ring, token bus), all of which suffer throughput degradation as each new node comes into the LAN, due to token waits.

This report was controversial, as modeling showed that collision-based networks became unstable under loads as low as 40% of nominal capacity. Many early researchers failed to understand the subtleties of the CSMA/CD protocol and how important it was to get the details right, and were really modeling somewhat different networks (usually not as good as real Ethernet).[9]

Bridging and switching

While repeaters could isolate some aspects of Ethernet segments, such as cable breakages, they still forwarded all traffic to all Ethernet devices. This created practical limits on how many machines could communicate on an Ethernet network. The entire network was one collision domain and all hosts had to be able to detect collisions anywhere on the network, limiting the number of repeaters between the farthest nodes. Finally segments joined by repeaters had to all operate at the same speed, making phased-in upgrades impossible.

To alleviate these problems, bridging was created to communicate at the data link layer while isolating the physical layer. With bridging, only well-formed Ethernet packets are forwarded from one Ethernet segment to another; collisions and packet errors are isolated. Bridges learn where devices are, by watching MAC addresses, and do not forward packets across segments when they know the destination address is not located in that direction.

Prior to discovery of network devices on the different segments, Ethernet bridges (and switches) work somewhat like Ethernet hubs, passing all traffic between segments. However, as the bridge discovers the addresses associated with each port, it only forwards network traffic to the necessary segments, improving overall performance. Broadcast traffic is still forwarded to all network segments. Bridges also overcame the limits on total segments between two hosts and allowed the mixing of speeds, both of which became very important with the introduction of Fast Ethernet.

Early bridges examined each packet one by one using software on a CPU, and some of them were significantly slower than hubs (multi-port repeaters) at forwarding traffic, especially when handling many ports at the same time. This was in part due to the fact that the entire Ethernet packet would be read into a buffer, the destination address compared with an internal table of known MAC addresses and a decision made as to whether to drop the packet or forward it to another or all segments.

In 1989 the networking company Kalpana introduced their EtherSwitch, the first Ethernet switch. This worked somewhat differently from an Ethernet bridge, in that only the header of the incoming packet would be examined before it was either dropped or forwarded to another segment. This greatly reduced the forwarding latency and the processing load on the network device. One drawback of this cut-through switching method was that packets that had been corrupted at a point beyond the header could still be propagated through the network, so a jabbering station could continue to disrupt the entire network. The remedy for this was to make available store-and-forward switching, where the packet would be read into a buffer on the switch in its entirety, verified against its checksum and then forwarded. This was essentially a return to the original approach of bridging, but with the advantage of more powerful, application-specific processors being used. Hence the bridging is then done in hardware, allowing packets to be forwarded at full wire speed. It is important to remember that the term switch was invented by device manufacturers and does not appear in the 802.3 standard.

Since packets are typically only delivered to the port they are intended for, traffic on a switched Ethernet is slightly less public than on shared-medium Ethernet. Despite this, switched Ethernet should still be regarded as an insecure network technology, because it is easy to subvert switched Ethernet systems by means such as ARP spoofing and MAC flooding. The bandwidth advantages, the slightly better isolation of devices from each other, the ability to easily mix different speeds of devices and the elimination of the chaining limits inherent in non-switched Ethernet have made switched Ethernet the dominant network technology.

When a twisted pair or fiber link segment is used and neither end is connected to a hub, full-duplex Ethernet becomes possible over that segment. In full duplex mode both devices can transmit and receive to/from each other at the same time, and there is no collision domain. This doubles the aggregate bandwidth of the link and is sometimes advertised as double the link speed (e.g. 200 Mbit/s) to account for this. However, this is misleading as performance will only double if traffic patterns are symmetrical (which in reality they rarely are). The elimination of the collision domain also means that all the link's bandwidth can be used and that segment length is not limited by the need for correct collision detection (this is most significant with some of the fiber variants of Ethernet).

Advanced networking

Simple switched Ethernet networks, while an improvement over hub-based Ethernet, suffer from single points of failure, attacks that trick switches or hosts into sending data to a machine even if it's not intended for it, scalability and security issues with regards to broadcast radiation and multicast traffic and and bandwidth choke points where a lot of traffic is forced down a single link.

Advanced networking features in switches and routers combat these issues through a number of means including spanning-tree protocol to maintain the active links of the network as a tree while allowing physical loops for redundancy, various port protection features, virtual LANs to keep different classes of users separate while using the same physical infrastructure, multilayer switching to route between different classes and link aggregation to add bandwidth to overloaded links and to provide some measure of redundancy.


Autonegotiation is the procedure by which two connected devices choose common transmission parameters, such as speed and duplex mode. Autonegotiation was first introduced as an optional feature for Fast Ethernet but it is also backwards compatible with 10BASE-T. Autonegotiation is mandatory for Gigabit Ethernet.

Varieties of Ethernet

The Ethernet physical layer evolved over a considerable time span and encompasses quite a few physical media interfaces and several magnitudes of speed. The most common forms used are 10BASE-T, 100BASE-TX, and 1000BASE-T. All three utilize Category 5 cables and 8P8C modular connectors. They run at 10 Mbit/s, 100 Mbit/s, and 1 Gbit/s, respectively. Fiber optic variants of Ethernet offer high performance, electrical isolation and distance (up to tens of kilometers with some versions). In general, network protocol stack software will work similarly on all varieties.

Ethernet frames

A data packet on the wire is called a frame and consists of just a long string of binary 0s and 1s. A frame viewed on the actual physical wire would show Preamble and Start Frame Delimiter, in addition to the other data. These are required by all physical hardware. However, they are not displayed by packet sniffing software because these bits are stripped away at OSI Layer 1 by the Ethernet adapter before being passed on to the OSI Layer 2 which is where packet sniffers collect their data from. There are OSI Physical Layer sniffers which can capture and display the Preamble and Start Frame but they are expensive and mainly used to detect physical related problems.

The table below shows the complete Ethernet frame, as transmitted, for the MTU of 1500 bytes (some implementations of gigabit Ethernet and higher speeds support larger jumbo frames). Note that the bit patterns in the preamble and start of frame delimiter are written as bit strings, with the first bit transmitted on the left (not as byte values, which in Ethernet are transmitted least significant bit(s) first). This notation matches the one used in the IEEE 802.3 standard. One octet is eight bits of data (i.e., a byte on most modern computers).

10/100M transceiver chips (MII PHY) work with 4-bits (one nibble) at a time. Therefore the preamble will be 7 instances of 0101 + 0101, and the Start Frame Delimiter will be 0101 + 1101. 8-bit values are sent low 4-bit and then high 4-bit. 1000M transceiver chips (GMII) work with 8-bits at a time, and 10 Gbit/s (XGMII) PHY works with 32-bits at a time.

802.3 MAC Frame
Preamble Start-of-Frame-Delimiter MAC destination MAC source 802.1Q header (optional) Ethertype/Length Payload (Data and padding) CRC-32 Interframe gap
15 nibble:s of 0101 1 nibble of 1101 6 octets 6 octets (4 octets) 2 octets 46–1500 octets 4 octets 12 octets
64–1522 octets
72–1530 octets
84–1542 octets

Note that when using octets. First 7 octets of 01010101 is sent. And then one octet of 11010101, but because the low 4-bit nibble 0101 is sent first. And later the high 4-bit nibble 1101. The Start-of-frame sequence 1101 will be sent after the preamble not before the last 4-bits the preamble as one might otherwise be lead to believe.

After a frame has been sent, transmitters are required to transmit 12 octets of idle characters before transmitting the next frame. Or stay idle for an equal amount of time be de-asserting the transmit enable signal.

From this table, we may calculate the efficiency and net bit rate for Ethernet:

\text{Efficiency} = \frac{\text{Payload size}}{\text{Frame size}}

Maximum efficiency is achieved with largest allowed payload size and is \frac{1500}{1538} = 97.53% for untagged Ethernet packets and \frac{1500}{1542} = 97.28% when 802.1Q VLAN tagging is used.

Net bit rate may be calculated from efficiency:

\text{Net bit rate} = \text{Efficiency} \times \text{Wire bit rate}\,\!

Maximum net bit rate for 100BASE-TX Ethernet without 802.1Q is 97.53 Mbit/s.

Ethernet frame types and the EtherType field

There are several types of Ethernet frames:

In addition, all four Ethernet frames types may optionally contain a IEEE 802.1Q tag to identify what VLAN it belongs to and its IEEE 802.1p priority (quality of service). This encapsulation is defined in the IEEE 802.3ac specification and increases the maximum frame by 4 bytes to 1522 bytes.

The different frame types have different formats and MTU values, but can coexist on the same physical medium.

Versions 1.0 and 2.0 of the Digital/Intel/Xerox (DIX) Ethernet specification have a 16-bit sub-protocol label field called the EtherType. The new IEEE 802.3 Ethernet specification replaced that with a 16-bit length field, with the MAC header followed by an IEEE 802.2 logical link control (LLC) header. The maximum length of a frame was 1518 bytes for untagged (1522 for 802.1p or 802.1q tagged) classical Ethernet v2 and IEEE802.3 frames. The two formats were eventually unified by the convention that values of that field between 64 and 1522 indicated the use of the new 802.3 Ethernet format with a length field, while values of 1536 decimal (0600 hexadecimal) and greater indicated the use of the original DIX or Ethernet II frame format with an EtherType sub-protocol identifier.[10] This convention allows software to determine whether a frame is an Ethernet II frame or an IEEE 802.3 frame, allowing the coexistence of both standards on the same physical medium. See also Jumbo Frames.

By examining the 802.2 LLC header, it is possible to determine whether it is followed by a SNAP (subnetwork access protocol) header. Some protocols, particularly those designed for the OSI networking stack, operate directly on top of 802.2 LLC, which provides both datagram and connection-oriented network services. The LLC header includes two additional eight-bit address fields, called service access points or SAPs in OSI terminology; when both source and destination SAP are set to the value 0xAA, the SNAP service is requested. The SNAP header allows EtherType values to be used with all IEEE 802 protocols, as well as supporting private protocol ID spaces. In IEEE 802.3x-1997, the IEEE Ethernet standard was changed to explicitly allow the use of the 16-bit field after the MAC addresses to be used as a length field or a type field.

Novell's "raw" 802.3 frame format was based on early IEEE 802.3 work. Novell used this as a starting point to create the first implementation of its own IPX Network Protocol over Ethernet. They did not use any LLC header but started the IPX packet directly after the length field. This does not conform to the IEEE 802.3 standard, but since IPX has always FF at the first two bytes (while in IEEE 802.2 LLC that pattern is theoretically possible but extremely unlikely), in practice this mostly coexists on the wire with other Ethernet implementations, with the notable exception of some early forms of DECnet which got confused by this.

Novell NetWare used this frame type by default until the mid nineties, and since Netware was very widespread back then, while IP was not, at some point in time most of the world's Ethernet traffic ran over "raw" 802.3 carrying IPX. Since Netware 4.10, Netware now defaults to IEEE 802.2 with LLC (Netware Frame Type Ethernet_802.2) when using IPX. (See "Ethernet Framing" in References for details.)

Mac OS uses 802.2/SNAP framing for the AppleTalk V2 protocol suite on Ethernet ("EtherTalk") and Ethernet II framing for TCP/IP.

The 802.2 variants of Ethernet are not in widespread use on common networks currently, with the exception of large corporate Netware installations that have not yet migrated to Netware over IP. In the past, many corporate networks supported 802.2 Ethernet to support transparent translating bridges between Ethernet and IEEE 802.5 Token Ring or FDDI networks. The most common framing type used today is Ethernet Version 2, as it is used by most Internet Protocol-based networks, with its EtherType set to 0x0800 for IPv4 and 0x86DD for IPv6.

There exists an Internet standard for encapsulating IP version 4 traffic in IEEE 802.2 frames with LLC/SNAP headers.[11] It is almost never implemented on Ethernet (although it is used on FDDI and on token ring, IEEE 802.11, and other IEEE 802 networks). IP traffic cannot be encapsulated in IEEE 802.2 LLC frames without SNAP because, although there is an LLC protocol type for IP, there is no LLC protocol type for ARP. IP Version 6 can also be transmitted over Ethernet using IEEE 802.2 with LLC/SNAP, but, again, that's almost never used (although LLC/SNAP encapsulation of IPv6 is used on IEEE 802 networks).

The IEEE 802.1Q tag, if present, is placed between the Source Address and the EtherType or Length fields. The first two bytes of the tag are the Tag Protocol Identifier (TPID) value of 0x8100. This is located in the same place as the EtherType/Length field in untagged frames, so an EtherType value of 0x8100 means the frame is tagged, and the true EtherType/Length is located after the Q-tag. The TPID is followed by two bytes containing the Tag Control Information (TCI) (the IEEE 802.1p priority (quality of service) and VLAN id). The Q-tag is followed by the rest of the frame, using one of the types described above.

Runt frames

A runt frame is an Ethernet frame that is less than the IEEE 802.3 minimum length of 64 bytes. Possible causes are collision, underruns, bad network card or software.[12][13]

Related standards

  • Networking standards that are not part of the IEEE 802.3 Ethernet standard, but support the Ethernet frame format, and are capable of interoperating with it.
    • LattisNet—A SynOptics pre-standard twisted-pair 10 Mbit/s variant.
    • 100BaseVG—An early contender for 100 Mbit/s Ethernet. It runs over Category 3 cabling. Uses four pairs. Commercial failure.
    • TIA 100BASE-SX—Promoted by the Telecommunications Industry Association. 100BASE-SX is an alternative implementation of 100 Mbit/s Ethernet over fiber; it is incompatible with the official 100BASE-FX standard. Its main feature is interoperability with 10BASE-FL, supporting autonegotiation between 10 Mbit/s and 100 Mbit/s operation – a feature lacking in the official standards due to the use of differing LED wavelengths. It is targeted at the installed base of 10 Mbit/s fiber network installations.
    • TIA 1000BASE-TX—Promoted by the Telecommunications Industry Association, it was a commercial failure, and no products exist. 1000BASE-TX uses a simpler protocol than the official 1000BASE-T standard so the electronics can be cheaper, but requires Category 6 cabling.
    •—A standard developed by ITU-T and promoted by HomeGrid Forum for high-speed (up to 1 Gbit/s) local area networks over existing home wiring (coaxial cables, power lines and phone lines). defines an Application Protocol Convergence (APC) layer that accepts Ethernet frames and encapsulates them into MSDUs.

It has been observed that Ethernet traffic has self-similar properties, with important consequences for traffic engineering.[citation needed]

See also



  1. The experimental Ethernet described in the 1976 paper ran at 3 Mbit/s and had eight-bit destination and source address fields, so the original Ethernet addresses were not the MAC addresses they are today. By software convention, the 16 bits after the destination and source address fields specified a "packet type", but, as the paper says, "different protocols use disjoint sets of packet types". Thus the original packet types could vary within each different protocol, rather than the packet type in the current Ethernet standard which specifies the protocol being used.
  2. In some cases the factory-assigned address can be overridden, either to avoid an address change when an adapter is replaced, or to use locally administered addresses.
  3. There are fundamental differences between wireless and wired shared-medium communications, such as the fact that it is much easier to detect collisions in a wired system system than a wireless system.
  4. See standing wave for an explanation of why
  5. Unless it is put into "promiscuous mode"
  6. This "one speaks, all listen" property is a security weakness of shared-medium Ethernet, since a node on an Ethernet network can eavesdrop on all traffic on the wire if it so chooses.
  7. Some peer fault modes (e.g. deliberate misbehavior) could still affect other devices on the network.


  1. "History of Ethernet". Cisco Systems. Retrieved 2010-05-10. 
  2. "Ethernet Prototype Circuit Board". Smithsonian National Museum of American History. Retrieved 2007-09-02. 
  3. Gerald W. Brock (2003-09-25). The Second Information Revolution. Harvard University Press. p. 151. ISBN 0674011783. 
  4. Template:US patent "Multipoint data communication system (with collision detection)"
  5. Metcalfe, Robert; Boggs, David (July 1976). "Ethernet: Distributed Packet-Switching For Local Computer Networks". Communications of the ACM 19 (7). Retrieved 2010-05-03. 
  6. Robert J. Kohlhepp (2000-10-02). "The 10 Most Important Products of the Decade". Network Computing. Retrieved 2008-02-25. 
  7. 1.1 IEEE 802 IEEE 802.RR-01/13 r0: Charter and History
  8. Shoch, John F. and Hupp, Jon A. (December 1980). "Measured performance of an Ethernet local network". Communications of the ACM (ACM Press) 23 (12): 711–721. doi:10.1145/359038.359044. ISSN: 0001-0782. 
  9. Boggs, D.R., Mogul, J.C., and Kent, C.A. (August 1988). "Measured capacity of an Ethernet: myths and reality". ACM SIGCOMM Computer Communication Review (ACM Press) 18 (4): 222–234. doi:10.1145/52325.52347. ISBN 0-89791-279-9. 
  10. LAN MAN Standards Committee of the IEEE Computer Society (20 March 1997). IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997. The Institute of Electrical and Electronics Engineers, Inc.. pp. 28–31. 
  11. RFC 1042
  12. "Glossary of Terms - R (Zarlink Semiconductor)".  071227
  13. "sys/dev/tx/if_txreg.h".  071227

External links

af:Ethernet ar:إيثرنت az:Ethernet bs:Ethernet br:Ethernet bg:Етернет ca:Ethernet cs:Ethernet da:Ethernet de:Ethernet et:Ethernet el:Ethernet es:Ethernet eo:Eterreto eu:Ethernet fa:اترنت fr:Ethernet ga:Ethernet gv:Ethernet gl:Ethernet ko:이더넷 hi:ईथरनेट hr:Ethernet id:Ethernet is:Íðnethe:Ethernet ku:Ethernet lv:Ethernet lb:Ethernet lt:Ethernet hu:Ethernet mk:Етернет ms:Ethernet nl:Ethernet ja:イーサネット no:Ethernet nn:Ethernetpt:Ethernet ro:Ethernetsq:Ethernet simple:Ethernet sk:Ethernet sl:Ethernet sr:Етернет fi:Ethernet sv:Ethernet ta:ஈதர்நெட் th:อีเทอร์เน็ต tr:Ethernet uk:Ethernet ur:اثیرجال vi:Ethernet fiu-vro:Ethernet yi:Ethernet zh:以太网

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.